DJ Note ?7?7?7?
V0.6

New SAM Schema at D@:
Description & Requirements

Diana Bonham,
Lauri Loebel Car penter,

Anil Kumar, Adam Lyon , Carmenita Moore,

Wyatt Merritt, Jeremy Smmons',

Julie Trumbo, Sephen White, Snisa Vesdli
Fermilab

April 14, 2004

1 Introduction
The new SAM Schema aims to solve severa problems:

Use of place holder data due to attribute restrictions that are not
appropriate for al file types.

Inability to assign more thanone run number to afile (especialy
important for files that are merged across many runs).

" For comments/corrections/questions regarding this document, send Adam e-mail at lyon@fnal.gov
T Consultant from Piocon Technologies, Naperville, IL

10/16/03

Difficulty in grouping data files into data sets for easy access. Right
now, users must remember valid reconstruction versions in order to
define their datasets.

Important file information is spread throughout the database. For
example, to determine if afileis Monte Carlo or Collider Data
requires a query with several joins.

Incorporate CDF luminosity information for their files.

The origina design ideais described in D& Note 4083 (http://www-
dO.fnal.gov/cgi-bin/dOnote?4083) with separate DATA_FI LES like tables
for different types of files. That was seen astoo large of a change, and so a
compromise was reached. The design now is to have each file in

DATA_FI LES carry an attribute that describes the file type. Database
triggers to validate specific DATA _FI LE attributes will be discussed and
coordinated jointly by the applications and database groups when dbserver
code modifications are being devel oped.

This document describes this schema update as well as changes that will
be necessary to applications, dbservers, etc.

The entire SAM DB schema ER diagram istoo large to put in this
document. See the latest version on the web at
http://d0db.fnal .gov/sam/doc/design/sam entities/er diagram.ps.

2 File Meta-data

The DATA_FI LES table holds most of the file information.

2.1 File Types

We identify five types of datafiles that are to be stored in the DATA_FI LES
table. The abbreviations are for reference in this document and are not meant
to be in the database.

nonPhysicsGeneric (NPG): Generic non-event files (perhaps log files).

importedDetector (ID): Event data from collisions that were brought
into SAM without a SAM project (e.g. from the online system). At D&
these would ber aw files.

importedSmulated (1S): Event data from Monte Carlo that were not
produced by a SAM project.

derivedDetector (DD): Event data produced by running a SAM project
over collider data

2 of 13

10/16/2003

derivedSmulated(DS): Event data produced by running a SAM project
over Monte Carlo data.

physicsGeneric (PG): Event data produced for personal purposes
(storage of personal skims or Monte Carlo). These files may not have
al meta-data.

cdfDataSet: Used only by CDF.
cdfFileSet: Used only by CDF.

The possible file types are stored inthe new FI LE_TYPE table. The file type
ID isthen stored in the DATA _FI LES tableinthe FI LE_TYPE | D attribute.
The file types will be stored with mixed case, though the DB server will
transform them to lower case for querying purposes.

2.2 Attributes for DATA FI LES

The required and optional attributesin DATA_FI LES now depend on the file
type. Only attributes that are required for all file types are non-nullable. The
following table describes all of the attributes for DATA _FI LES. Note the
abbreviations for the file types above. In the table, Rindicates the attribute is
required, O indicates optional, and N/A indicates the attribute is not applicable
to that particular file type.

Attribute NPG | ID IS | DD | DS | PG Notes

FILE ID

Non-nullable
R R R R R R attribute.

Non-nullable

FILE TYPE I D R R R R R R | attribute. New

attribute.

FI LE_NAME R R R R R R | Non-nullable

attribute.

Non-nullabl e

FI LE_FORNVAT_I D R R R R R R | attribute.

Was nullable.

Non-nullable

FI LE_SI ZE_I N_BYTES R|R|R| R/| R| R |attribute

Was nullable.

Non-nullable

CRC_TYPE R R R R R R | attribute.

Was nullable.

CRC_VALUE R R R R R R | Non-nullable

attribute.

30f 13

10/16/03

Attribute

NPG

DD

DS

PG

Notes

Was nullable.

CREATE_USER

Non-nullable
attribute.

CREATE_DATE

Non-nullable
attribute.

UPDATE_USER

Non-nullable
attribute.

UPDATE_DATE

Non-nullable
attribute.

FI LE_CONTENT _
STATUS | D

Non-nullable

attribute.
Was nullable.

DATA TIER I D

N/A

All event data
must have a
datatier. This
attribute does
not apply to
non-event data.
Was non-
nullable.

APPL_FAM LY_I D

N/A

Was non-
nullable.

FI LE_PARTI Tl ON

N/A

N/A

N/A

N/A

N/A

At D@, only
raw datafiles
have a
partition.

PROCESS | D

N/A

N/A

N/A

Non-imported
event data have
process I Ds.
Was non-
nullable.

RESPONSI BLE_ WORKI NG_
GROUP_I D

N/A

New attribute.
Indicatesthe
group (e.g.
W/z)
responsible for
the data (e.g.
WI/Z) as
opposed to the
group who
produced the
data(e.g. MC)

4 of 13

10/16/2003

Attribute

NPG

DD

DS

PG

Notes

PHYSI CAL_DATASTREAM | D

N/A

Monte Carlo
files may or
may not be
streamed.
Was non-
nullable.

EVENT_COUNT

N/A

Was non-
nullable.

FI RST_EVENT NUMBER

N/A

Difficult to fill
for old files.

Was non-
nullable.

LAST_EVENT_NUVBER

N/A

Difficult to fill
for old files.

Was non-
nullable.

START_TI ME

N/A

N/A

N/A

N/A

N/A

At D@, only
raw files have a
valid start time.
Was non-
nullable.

END_TI ME

N/A

N/A

N/A

N/A

N/A

At D@, only
raw files have a
valid end time.
Was non-
nullable.

2.2.1 Removed attributes
The following attributes are removed from the DATA_FI LES table,

FI LE_STATUS. This attribute is deprecated from a previous schema
cut. Any data may be discarded during the schema migration.

FI LE_AVAI LABI LI TY_STATUS. This attribute is deprecated. File
availability information is saved with location and station information.

Any data may be discarded during the schema migration.

RUN_I D. This attribute is replaced by the DATAFI LE_RUNS table.
Data should be saved as discussed in section 4.2.

LUM M N, LUM_MAX. The data from these attributes are in the new
DATAFI LE_LUVBLOCK table (see section 5). Note that for the

50f 13

10/16/03

schema migration, any datain these attributes should be copied to the
new table.

M NBI AS_NUMBER, M NBI AS_TYPE,

PHYSI CS_PROCESS | D. These attributes were meant to store
Monte Carlo specific information. Such information is duplicated in
the MC parameters.

KBYTE_FI LE_SI ZE. Removed in favor of FI LE_SI ZE.

2.3 Change from free textto restricted values

Severa columns that were free text are now restricted with support tables.
These new columns are DATA_TI ER_I D (DATA _TI ER wastheold
column) and FI LE_FORMAT _I D (FORMAT _I NFOwas the old column).

24 Implementation
Implementation of this new schema will require changes to the database,
database servers and applications.

The DB server methods and applications that deal with saving filesin SAM
will have to pay attention to the FILE_TY PE and require other attributes as

appropriate.

In order to keep the DB servers as flexible as possible, the attribute constraints
will be coded in a configuration file loaded at runtime. The DB server could
thus be easily tailored for D@ and CDF.

2.4.1 New FILE_TYPE_ID attribute

TheFl LE_TYPE_|I D atribute is new to the schema. DB servers will need to
fill this attribute and query applications will need to use it. This change
permeates most applications (MISWEB, Dataset Definition Editor, etc.) that
query for files. The ID will point into anew FI LE_TYPE table that specifies
the valid file types as shown in section 2.1.

For the schema migration, the current files in the DB must be assigned afile
type. This assignment may be determined from the file data-tier and the run
type. To get the run type, determine the RUN | D of the file and look it up in
the RUNS table. The RUN_TYPE | D has the run type information.

CDF and D@ will migrate to the file type differently. The rules for D@ are as
follows:

Data-tier is unofficial-reco then file type is physicsGeneric

Data-tier isepics, sam-dbserver-log, sam-master-log, significant-
event, special then file type is nonPhysicsGeneric

6 of 13

10/16/2003

Data-tier not above and run_type is monte carlo and process typeis
analysis, then file typeis derivedSimulated.

Run_type is monte carlo and process _type is not analysis then file
typeis importedSimulated

Run_type is not monte carlo and process type is analysis then file type
is derivedDetector

Run_type is not monte carlo and process type is not analysis then file
typeis importedDetector

The rules for CDF are as follows:

File status of virtual: with file name of six characters have the
cdfDataSet file type; with file name of eight characters have the
cdfFileSet type; otherwise file type is nonPhysicsGeneric.

File status of being imported or deleted: nonPhysicsGeneric file type.

File status of available with data-tier of raw: ImportedDetector file
type if the file name has 17 characters, otherwise file typeis
nonPhysicsGeneric.

File status of available with data-tier of reconstructed:
derivedDetector filetypeif the file name has 17 characters; otherwise
file type is nonPhysicsGeneric.

File status of available with data-tiers of generated or simulated:
importedSimulated file type if the file name has 17 characters;
otherwise file type is nonPhysicsGeneric.

File status of available with data-tier of unidentified:
nonPhysicsGeneric file type (regardless of file name length)

2.4.2 FILE_ FORMAT ID attribute

This attribute is meant to describe what application or tool is needed to read
the file (for example, dspack, tar, root, gzip). This used to be the free text
FORMAT _I NFO attribute, but now will be arestricted attribute with a support
table. At thistime, the FORMAT _I NFO attribute is not being filled. For the
schema migration it's easy to automatically deduce the file format. The rules
for DD are as follows (use the ID that corresponds to the format specified
below):

Files with unidentified data-tier will have unknown format.

7 of 13

10/16/03

digitized, digitized-bygroup, filtered-raw, filtered-reco, filtered-
thumbnail, generated, generated-bygroup, raw, raw-bygroup,
reconstructed, reconstructed-bygroup, simulated, simulated-bygroup,
thumbnail, thumbnail-bygroup, triggersimulated, unofficial_reco data
tiersare dl in the dspack format.

root-bygroup, root-tuple, root-tuple-bygroup, filtered-root datatiers
areall inthe root format.

v-filtered-thumbnail, virtual-filtered-reco, virtual-filtered-root, virtual-
thumbnail are al in the ether eal format. (Entries of these data-tiers
may be removed in alater schema cut).

For al other datatiers (e.g. epics, sam-dbserver-log, sam-master-log,
significant-event, special), the type depends on the file name. If the file
name ends in “tar”, then the format should be tar. If the file name ends
in “tar.gz” then the format should be gzipped-tar. If the file endsin
“.sta’, then the format should be run-1-sta.

The DB server should add the correct FI LE_ FORMAT _| D when it is easy to
determine. Otherwise, it will have to use and require input from the user. The
applications that store files into SAM will have to alow for such input for the
appropriate non-event data tiers.

2.4.3 New RESPONSIBLE_ WORKING_GROUP_ID attribute
This new attribute points into the WORKI NG _GROUP table and is meant to
identify the group responsible for the contents of a particular datafile in SAM.
It is not meant for resource tracking, but rather tells the user who they can talk
to if they have a question about afile. This attribute is different than the
WORKI NG_GROUP_I D that may be obtained from the process information
(that is the group that produced the file).

The DB server methods and applications that deal with storing files into SAM
will have to deal with this attribute.

2.4.4 FILE_SIZE and like attributes
FI LE_SI ZE_UNI TS_I Dreplacesthe FI LE_SI ZE_UNI TS attribute and
pointsintoanew FI LE_SI ZE _UNI TS table.

TheFI LE_SI ZEand FI LE_SI ZE_UNI TS | D attributes are now non
nullable. For the schema migration, if FI LE_SI ZE isnull, replace it with the
vaue from KBYTE_FI LE_SI ZE and settheFI LE_SI ZE_UNI TS_| Dto
correspond to Kbytes. KBYTE_FI LE_SI ZE will no longer be present in the
schema.

8 of 13

10/16/2003

2.4.5 CRC_TYPE and CRC_VALUE attributes

These fields have become non-nullable. For the schema migration, if
CRC_VALUE is null, replace it with “unknown value’. If CRC_TYPE isnull,
replace it with “unknown crc type’.

2.4.6 FIRST_EVENT _NUMBER and

LAST EVENT_NUMBER attributes
These attributes are now nullable (were nontnullable). Thisinformation
should be determined as meta-data by applications writing files to be stored in
SAM. DB server methods and SAM applications must accept this information
for storage in the database. However, it will be difficult to fill in these
attributes for files already stored in SAM without actually reading each file
and determining the event numbers. Perhaps this is more trouble that it's
worth. Given that the farm does not process events in order, perhaps these
fields are not so useful for D@ and should be left null always.

3 Valid Data Groups

Currently, users must remember all of the versions of the reconstruction
program that correspond to good data. When we re-reconstruct a set of data,
users must know that a certain reco version is now bad and should not be
used. Instead of having users remember al thisinformation, SAM can keep
track of data that is valid for different purposes through Valid Data Groups.
Valid Data Groups are a new feature introduced by this schema.

3.1 Structure
The ER diagram for Valid Data Groups is shown below.

DATATMES APPLCATION_FAMILY DATA_GROUP
FILE_D NUMERIC(38,0) NOT NULL APFLFAMILY_D NUMERIC(36,0) NOTNULL DATA_GROUP_ID NUMERIC(38,0) NOT NULL
FILE_TYPE VARCHAR(84) NOT NULL
EXPERIMENT_ID NUMERIC(10.0) NOT NULL
DATA_TIER VARCHAR(E4) NOT NULL
APPL_FAMILY_ID (FK NUMERIC(38,0) NOT NULL
FILE_NAVE VARCHAR(1000) NoT HULL | i
FILE_STATUS NUMERIC(38,0) NOT NULL
FORMAT_INFO VARCHAR(64) NOTNULL VALID_DATA_GROUP 7 pata_roup_TveE
KBYTE_FILE_SIZE NUMERIG(38,0) NOT NULL DATA_GROUP_ID (FK) NUMERIC(38,0) NOT NULL DATA_GROUP_TYPE NUMERIC(38,0) NOT NULL
gté—aié s ”:JR”CESA‘%:“ ;:ﬁ %tt DATA_GROUP_TYPE (FK) NUMERIC(38,0) NOT NULL
- SIZE L V2) A AMILY_ID L (38,0 I
Eersonin e NoThOLE PPL_FAMILY_D(FK) NUMERIC(38,0) NOT NULL
CREATE_USER VARCHAR(32) NOTNULL \
CREATE_DATE DATE NOT NULL

e
DATAFILES VALID_DATA_GROUP
DATA_GROUP_ID (FK) NUMERIC(38.0) NOT NULL
DATA_GROUF_TYFE (FK) NUMERIC(38,0) NOT NULL
APPL_FANILY_ID (FK) NUMERIG(38.0) NOT NULL
FILE_ID (FK) HUMERIC(38,0) NOT NULL

Figure 1: Valid data groups structure

Data files belonging to a valid data group have an entry in

DATA FI LES VALI D_DATA GROUP, the mapping table between
DATA_FI LESand VALI D_DATA GROUP. A valid data group may have a
name and a type defined in their respective tables. Furthermore, a valid data
group is associated with one or more application families.

9 of 13

10/16/03

An example valid data group is “p13Moriond2003”, containing al files valid
for analysis for Moriond 2003. A user would only have to remember this valid
data group name to gain access to these data.

3.2 Implementation
Severa additions to the SAM DB server and application software are needed
to make valid data groups work:

There must be automated mechanisms for managing the files that
belong to different valid data groups. For example, files rolling off the
farm should automatically be added to the “current” valid data group.

For reprocessing operations, there must be mechanisms for removing
the original files from the group and adding the new files.

There must be easy query mechanisms for viewing what files belong
to avaid data group.

Valid data group queries must be added to the current data set
definition mechanisms.

4 Runs

In the current SAM database, afile can be associated with only one run
number. At D@, this restriction is fine for raw files and files produced by the
reconstruction farm. But user skim files that may be placed back in SAM may
span more than one run. To alow for multirun files, a mapping table between
DATA_FI LES and RUNS isadded.

DATAFILES_RUNS RUNS
UN_ID (FK) ML 38.0) N L
DATAFILES RUN_ID (FK) NUMERIC(3&,0) NOT NULL RUN_ID NUMERIC(38,0) NOT NULL

FILE_ID (FK) NUMERIC(38,0) NOT NULL
!) I . D (FK)) ==
— s % RUN_NUMBER NUMERIC(38,0) NOT NULL

Figure 2: Connection to run numbers

4.1 Implementation

DB server methods and application programs that store data into SAM will
now have to fill the mapping table. While doing so, LOW _RUN and

HI GH_RUNfrom DATA_FI LES should also be filled. Furthermore, query
applications will now have to do the table join with the mapping table to
determine the runs associated with afile.

4.2 Schema Migration

For event data, only thumbnail and thumbnail-bygroup data-tiers have files
that actually correspond to data from more than one run (thisis true for DQ,
probably not for CDF). For all other data tiers, just copy the value of the old
RUN_I D attribute from DATA_FI LES into the new DATA_FI LES_RUNS
table.

10 of 13

10/16/2003

For athumbnail or thumbnail-bygroup file, get al of the RAW file parents
and put their run numbersinto the DATA_FILES RUNS table. Note that this
may involve several hops through the lineage table.

1. Given athumbnail file ID

2. Lookup FI LE_I D_SOURCE in FI LE_LI NEAGES where
FI LE_I D_DEST =thethumbnail file ID (thislooks up the parents
of the thumbnail file).

3. Foreach FI LE_| D_SOURCE, look up the data-tier in DATA_FI LES.
If the data-tier israw, then put its RUN_I Dinto the
DATA_FI LES_RUNS table and associate it with the thumbnail file ID.

4. If the data-tier is not raw, then look up FI LE | D_SOURCE in
FI LE_LI NEAGES whereFI LE_| D_DEST = thisfilelD. (Thislooks

up the parents of the non-raw file — another hop). Then repeat 3.
above.

5 Luminosity Blocks

In the current SAM database, each filein DATA _FI LES has

LUVBLOCK_M N and LUVBLOCK _MAX attributes. At D@ these attributes are
only appropriate for raw files. CDF wants to store luminosity information in
the SAM database itself, and so new tables are added. D will take advantage
of only one of the new tables.

5.1 Structure

Instead of having the low and high luminosity block numbers associated with
afileinthe DATA FI LES table, these values are placed in the

DATAFI LE_LUMBLOCK table as shown in the diagram below.

DATAFILES LUMBLOCK_VERSION

FILE_ID NUMERIC(38,0) NOTMNULL LUMBLOCK_VERSION_ID NUMERIC(38,0) NOT NULL
LUMBLOCK_ID (FK) MUMERIC{28,0) NULL [P
DATAFILE_LUMBLOCK
FILE_ID (FK) MUMERIC(38,0) MOT MULL LUMBLOCKS
LUMBLOCK_ID_HIGH (FK) NUMERIC(28,0) NOT NULL LUMBLOCK_ID NUMERIC(38,0) NOT NULL
LUMBLOCK_ID_LOW (FK} MUMERIC(38,0) NOT MULL ?ﬁ:‘z RS S

Figure 3: Luminosity block information

The other tables are for storing CDF specific luminosity information and
would not be used at D@. So this diagram is not quite accurate as the foreign
keys LUMBLOCK | D _HI GHand LUVBLOCK | D_LOWwould be replaced by
regular nonnull numeric data.

11 0f13

10/16/03

5.1.1 CDF Structure

Note that CDF has an additional table called LUVBLOCK VERSI ON_TYPES.
It has two columns: LUVBLOCK _VERSI ON | D and

LUVBLOCK_VERSI ON_DESCRI PTI ON (the latter will have values of
accelerator and livetimes). LUVBLOCK VERSI ON | Dwill be aforeign key
into LUMBLOCK _VERSI ON table. Furthermore, LUVBLOCK VERSI ON's
primary key will be acomposite of LUMBLOCK | D and

LUVBLOCK_VERSI ON_| D.

5.2 Implementation

The DB server methods and applications that fill in the high and low
luminosity block numbers need to now fill the DATAFI LE_LUVBLOCK table,
but only for raw data-tier files. Queries for the luminosity block information
must also use that table.

Note that the D@ production farm has been filling in high/low luminosity
block information for nonraw data-tier files (e.g. thumbnails). Presumably,
these values are derived from the high/low luminaosity block limits from the
file's parents, but there's no real guarantee that this was done correctly (the
luminosity tools ignore luminosity block information for nonraw data-tier
files). As specified above, DATAFI LE_LUVMBLOCK should only be filled for
data-tier raw filesto avoid confusion.

6 DATA_FILES RAW

In the current SAM DB schema, FILE_LINEAGES holds parent and child
information about afile (what file was run over to produce the current file and
what files have been produced by running over the current file). This
information is essential for luminosity determination and other tasks. To make
some luminosity (and perhaps other) tasks easier, a new table is introduced
that allows for a direct determination of the raw file parent of a given file
without having to traverse intermediate files. The structure of thisdesign is
shown below.

12 of 13

10/16/2003

DATAFILES
FILE_ID NUMERIC(358,0) NOT NULL

%
DATAFILES_RAW

FILE_ID (FK} NUMERIC(38,0) MOT NULL
RAW_FILE_ID (FK) MUMERIC(38,0) MOT NLULL

|

Figure 4: One step to RAW files scheme

6.1 Implementation

DB server methods and applications that insert files into the database will
have to traverse the file lineage and fill the DATA_FI LES RAWitable
appropriately. Queries can be added in the future when they are developed for
luminosity or other applications.

Obvioudy files with data-tier of raw should not be inserted in this table.

13 0of 13

